6 Supplemental Null Set Exploratory Statistics
6.2 Number of DEGs
6.2.1 Data
t_virus_genes <-
read.csv("Output Files/txome_female_edgeR_viralRNA_null_DEG.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="V+ vs V-") %>%
dplyr::rename("genes" = ".")
t_acute_genes <-
read.csv("Output Files/txome_female_edgeR_null_DEG_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Acute") %>%
dplyr::rename("genes" = ".")
t_peak_genes <-
read.csv("Output Files/txome_female_edgeR_null_DEG_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Peak") %>%
dplyr::rename("genes" = ".")
t_late_genes <-
read.csv("Output Files/txome_female_edgeR_null_DEG_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Late") %>%
dplyr::rename("genes" = ".")
g_virus_genes <-
read.csv("Output Files/gnome_female_edgeR_viralRNA_null_DEG.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="V+ vs V-") %>%
dplyr::rename("genes" = ".")
g_acute_genes <-
read.csv("Output Files/gnome_female_edgeR_null_DEG_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Acute") %>%
dplyr::rename("genes" = ".")
g_peak_genes <-
read.csv("Output Files/gnome_female_edgeR_null_DEG_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Peak") %>%
dplyr::rename("genes" = ".")
g_late_genes <-
read.csv("Output Files/gnome_female_edgeR_null_DEG_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Late") %>%
dplyr::rename("genes" = ".")
genes <-
rbind(t_virus_genes, g_virus_genes,
t_acute_genes, t_peak_genes, t_late_genes,
g_acute_genes, g_peak_genes, g_late_genes) %>%
mutate(approach=factor(approach, levels=c("Transcriptome", "Genome")),
stage=factor(stage, levels=c("V+ vs V-", "Acute", "Peak", "Late")))
6.3 DEG Frequency
6.3.1 Data
t_virus_genefreq <-
read.csv("Output Files/txome_female_edgeR_viralRNA_null_DEG.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
unlist() %>%
table() %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="V+ vs V-") %>%
dplyr::rename("genes" = ".")
t_acute_genefreq <-
read.csv("Output Files/txome_female_edgeR_null_DEG_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
unlist() %>%
table() %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Acute") %>%
dplyr::rename("genes" = ".")
t_peak_genefreq <-
read.csv("Output Files/txome_female_edgeR_null_DEG_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
unlist() %>%
table() %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Peak") %>%
dplyr::rename("genes" = ".")
t_late_genefreq <-
read.csv("Output Files/txome_female_edgeR_null_DEG_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
unlist() %>%
table() %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Late") %>%
dplyr::rename("genes" = ".")
g_virus_genefreq <-
read.csv("Output Files/gnome_female_edgeR_viralRNA_null_DEG.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
unlist() %>%
table() %>%
data.frame() %>%
mutate(approach="Genome",
stage="V+ vs V-") %>%
dplyr::rename("genes" = ".")
g_acute_genefreq <-
read.csv("Output Files/gnome_female_edgeR_null_DEG_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
unlist() %>%
table() %>%
data.frame() %>%
mutate(approach="Genome",
stage="Acute") %>%
dplyr::rename("genes" = ".")
g_peak_genefreq <-
read.csv("Output Files/gnome_female_edgeR_null_DEG_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
unlist() %>%
table() %>%
data.frame() %>%
mutate(approach="Genome",
stage="Peak") %>%
dplyr::rename("genes" = ".")
g_late_genefreq <-
read.csv("Output Files/gnome_female_edgeR_null_DEG_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
unlist() %>%
table() %>%
data.frame() %>%
mutate(approach="Genome",
stage="Late") %>%
dplyr::rename("genes" = ".")
genefreq <-
rbind(t_virus_genefreq, g_virus_genefreq,
t_acute_genefreq, t_peak_genefreq, t_late_genefreq,
g_acute_genefreq, g_peak_genefreq, g_late_genefreq) %>%
mutate(approach=factor(approach, levels=c("Transcriptome", "Genome")),
stage=factor(stage, levels=c("V+ vs V-", "Acute", "Peak", "Late")))
6.4 Number of GO terms
6.4.1 Data - Import & Configure
t_virus_bp <-
read.csv("Output Files/txome_female_edgeR_viralRNA_null_GO_bp.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="V+ vs V-",
go="Biological Process") %>%
dplyr::rename("terms" = ".")
t_virus_cc <-
read.csv("Output Files/txome_female_edgeR_viralRNA_null_GO_cc.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="V+ vs V-",
go="Cellular Component") %>%
dplyr::rename("terms" = ".")
t_virus_mf <-
read.csv("Output Files/txome_female_edgeR_viralRNA_null_GO_mf.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="V+ vs V-",
go="Molecular Function") %>%
dplyr::rename("terms" = ".")
t_acute_bp <-
read.csv("Output Files/txome_female_edgeR_null_GO_bp_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Acute",
go="Biological Process") %>%
dplyr::rename("terms" = ".")
t_acute_cc <-
read.csv("Output Files/txome_female_edgeR_null_GO_cc_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Acute",
go="Cellular Component") %>%
dplyr::rename("terms" = ".")
t_acute_mf <-
read.csv("Output Files/txome_female_edgeR_null_GO_mf_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Acute",
go="Molecular Function") %>%
dplyr::rename("terms" = ".")
t_peak_bp <-
read.csv("Output Files/txome_female_edgeR_null_GO_bp_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Peak",
go="Biological Process") %>%
dplyr::rename("terms" = ".")
t_peak_cc <-
read.csv("Output Files/txome_female_edgeR_null_GO_cc_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Peak",
go="Cellular Component") %>%
dplyr::rename("terms" = ".")
t_peak_mf <-
read.csv("Output Files/txome_female_edgeR_null_GO_mf_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Peak",
go="Molecular Function") %>%
dplyr::rename("terms" = ".")
t_late_bp <-
read.csv("Output Files/txome_female_edgeR_null_GO_bp_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Late",
go="Biological Process") %>%
dplyr::rename("terms" = ".")
t_late_cc <-
read.csv("Output Files/txome_female_edgeR_null_GO_cc_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Late",
go="Cellular Component") %>%
dplyr::rename("terms" = ".")
t_late_mf <-
read.csv("Output Files/txome_female_edgeR_null_GO_mf_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Late",
go="Molecular Function") %>%
dplyr::rename("terms" = ".")
g_virus_bp <-
read.csv("Output Files/gnome_female_edgeR_viralRNA_null_GO_bp.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="V+ vs V-",
go="Biological Process") %>%
dplyr::rename("terms" = ".")
g_virus_cc <-
read.csv("Output Files/gnome_female_edgeR_viralRNA_null_GO_cc.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="V+ vs V-",
go="Cellular Component") %>%
dplyr::rename("terms" = ".")
g_virus_mf <-
read.csv("Output Files/gnome_female_edgeR_viralRNA_null_GO_mf.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="V+ vs V-",
go="Molecular Function") %>%
dplyr::rename("terms" = ".")
g_acute_bp <-
read.csv("Output Files/gnome_female_edgeR_null_GO_bp_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Acute",
go="Biological Process") %>%
dplyr::rename("terms" = ".")
g_acute_cc <-
read.csv("Output Files/gnome_female_edgeR_null_GO_cc_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Acute",
go="Cellular Component") %>%
dplyr::rename("terms" = ".")
g_acute_mf <-
read.csv("Output Files/gnome_female_edgeR_null_GO_mf_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Acute",
go="Molecular Function") %>%
dplyr::rename("terms" = ".")
g_peak_bp <-
read.csv("Output Files/gnome_female_edgeR_null_GO_bp_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Peak",
go="Biological Process") %>%
dplyr::rename("terms" = ".")
g_peak_cc <-
read.csv("Output Files/gnome_female_edgeR_null_GO_cc_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Peak",
go="Cellular Component") %>%
dplyr::rename("terms" = ".")
g_peak_mf <-
read.csv("Output Files/gnome_female_edgeR_null_GO_mf_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Peak",
go="Molecular Function") %>%
dplyr::rename("terms" = ".")
g_late_bp <-
read.csv("Output Files/gnome_female_edgeR_null_GO_bp_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Late",
go="Biological Process") %>%
dplyr::rename("terms" = ".")
g_late_cc <-
read.csv("Output Files/gnome_female_edgeR_null_GO_cc_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Late",
go="Cellular Component") %>%
dplyr::rename("terms" = ".")
g_late_mf <-
read.csv("Output Files/gnome_female_edgeR_null_GO_mf_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Late",
go="Molecular Function") %>%
dplyr::rename("terms" = ".")
goterms <- rbind(t_virus_bp, t_virus_cc, t_virus_mf,
t_acute_bp, t_acute_cc, t_acute_mf,
t_peak_bp, t_peak_cc, t_peak_mf,
t_late_bp, t_late_cc, t_late_mf,
g_virus_bp, g_virus_cc, g_virus_mf,
g_acute_bp, g_acute_cc, g_acute_mf,
g_peak_bp, g_peak_cc, g_peak_mf,
g_late_bp, g_late_cc, g_late_mf) %>%
mutate(approach=factor(approach, levels=c("Transcriptome", "Genome")),
stage=factor(stage, levels=c("V+ vs V-", "Acute", "Peak", "Late")))
6.4.2 Plot
null_go_plot <-
ggplot(goterms, aes(x=stage, y=log(terms))) +
geom_boxplot() +
facet_nested_wrap(vars(approach, go), dir="h",
strip.position="top", ncol=3, drop=TRUE) +
labs(x="Influenza Stage", y="log(# GO Terms) per Trial") +
theme_bw() +
theme(panel.grid=element_blank())
ggsave("Figures/supplemental_TG_F_null_#gotermsplot.jpg", null_go_plot,
width=5, height=7, units="in")
6.5 Number of KEGG Pathways
6.5.1 Data
t_virus_kegg <-
read.csv("Output Files/txome_female_edgeR_viralRNA_null_kegg.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="V+ vs V-") %>%
dplyr::rename("terms" = ".")
t_acute_kegg <-
read.csv("Output Files/txome_female_edgeR_null_kegg_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Acute") %>%
dplyr::rename("terms" = ".")
t_peak_kegg <-
read.csv("Output Files/txome_female_edgeR_null_kegg_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Peak") %>%
dplyr::rename("terms" = ".")
t_late_kegg <-
read.csv("Output Files/txome_female_edgeR_null_kegg_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Transcriptome",
stage="Late") %>%
dplyr::rename("terms" = ".")
g_virus_kegg <-
read.csv("Output Files/gnome_female_edgeR_viralRNA_null_kegg.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="V+ vs V-") %>%
dplyr::rename("terms" = ".")
g_acute_kegg <-
read.csv("Output Files/gnome_female_edgeR_null_kegg_acute.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Acute") %>%
dplyr::rename("terms" = ".")
g_peak_kegg <-
read.csv("Output Files/gnome_female_edgeR_null_kegg_peak.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Peak") %>%
dplyr::rename("terms" = ".")
g_late_kegg <-
read.csv("Output Files/gnome_female_edgeR_null_kegg_late.csv") %>%
as.list() %>%
lapply(., function(x) x[!is.na(x)]) %>%
lengths(., use.names=TRUE) %>%
data.frame() %>%
mutate(approach="Genome",
stage="Late") %>%
dplyr::rename("terms" = ".")
kegg <- rbind(t_virus_kegg,
t_acute_kegg,
t_peak_kegg,
t_late_kegg,
g_virus_kegg,
g_acute_kegg,
g_peak_kegg,
g_late_kegg) %>%
mutate(approach=factor(approach, levels=c("Transcriptome", "Genome")),
stage=factor(stage, levels=c( "V+ vs V-", "Acute", "Peak", "Late")))
6.5.2 Plot
null_kegg_plot <-
ggplot(kegg, aes(x=stage, y=log(terms))) +
geom_boxplot() +
facet_grid(~approach) +
labs(x="Influenza Stage", y="log(# KEGG Pathways) per Trial") +
theme_bw() +
theme(panel.grid=element_blank())
ggsave("Figures/supplemental_TG_F_null_#keggplot.jpg", null_kegg_plot,
width=6, height=3, units="in")