2 Tidy Cytokine Data Metadata
2.2 Raw file import & cleaning
cyto1 <-
read.csv("Input Files/Grey seal cytokine 200_300_800_900.csv") %>%
select(-c(1:2)) %>%
slice(-c(1:6, 8:18, 37:56)) %>%
setNames(c("Sample", .[1,2:14])) %>%
slice(-c(1)) %>%
mutate(analysis.year="2016",
batch="1")
cyto_names <-
gsub("\\s*\\([^\\)]+\\)","", colnames(cyto1)[2:14])
cyto1 <-
cyto1 %>%
setNames(c("Sample", cyto_names, "analysis.year", "batch"))
cyto2 <-
read.csv("Input Files/Results #1349 plate 1 grey seal millipore canine kit.csv") %>%
select(-c(2:3, 5:6, 8:10)) %>%
filter(!Description=="" &
!Description=="QC1" &
!Description=="QC2") %>%
pivot_wider(id_cols="Description", names_from="Analyte", values_from="Obs.Conc") %>%
filter(!Description=="853" &
!Description=="869" &
!Description=="896" &
!Description=="900") %>%
mutate(analysis.year="2022",
batch="2") %>%
setNames(c("Sample", cyto_names, "analysis.year", "batch"))
cyto3 <-
read.csv("Input Files/Results #1350 plate 2 grey seal millipore canine kit.csv") %>%
select(-c(2:3, 5:6, 8:10)) %>%
filter(!Description=="" &
!Description=="QC1" &
!Description=="QC2") %>%
pivot_wider(id_cols="Description", names_from="Analyte", values_from="Obs.Conc") %>%
mutate(analysis.year="2022",
batch="3") %>%
setNames(c("Sample", cyto_names, "analysis.year", "batch"))
# human error while typing in sample names to computer 1505 -> 1507
cyto3$Sample[22] <- "1507"
cyto4 <-
read.csv("Input Files/Results #1359 4-13-23 2023 Monomoy_Muskeget_GP cytokines.csv") %>%
select(-c(1:2,17)) %>%
rename("Sample"="X.2") %>%
filter(!Sample=="" &
!Sample=="QC1" &
!Sample=="QC2" &
!Sample=="Description") %>%
mutate(Sample=gsub("Hg ", "", Sample),
analysis.year="2023",
batch="4") %>%
setNames(c("Sample", cyto_names, "analysis.year", "batch"))
2.3 Merge cytokine data & tidy
cyto <-
bind_rows(cyto1, cyto2, cyto3, cyto4)
# Change OOR < to 0 & remove *
for (i in 1:nrow(cyto)) {
for (j in 1:ncol(cyto)) {
str <- cyto[i,j]
new_str <- (gsub("\\*","",str))
cyto[i,j] <- new_str
{if (cyto[i,j] == "OOR <") {
cyto[i,j] <- 0
}
else{next}
}
}
}
# Write out data for all cytokines
write.csv(cyto, "Output Files/cleaned_cytokine_all.csv", row.names=FALSE)
# Remove cytokines with <10% (11) detections
cyto_10 <-
cyto %>%
select_if(function(x) sum(x>0) > 11) %>%
mutate(Sample = cyto$Sample)
# Write out reduced cytokine data
write.csv(cyto_10, file="Output Files/cleaned_cytokine.csv", row.names=FALSE)
2.4 Create Cytokine (0/1) Dataset
databin <- cyto
for (i in 1:nrow(databin)) {
for (j in 2:14) {
databin[i,j] <- ifelse(databin[i,j] > 0, 1, 0)
}
}
# Write out binary cytokine data for all
write.csv(databin, "Output Files/cleaned_cytokine_bin_all.csv", row.names=FALSE)
# Remove cytokines with <10% (11) detections
databin_10 <-
databin %>%
select_if(function(x) sum(x>0) > 11)
# Write out binary cytokine dataset
write.csv(databin_10, file="Output Files/cleaned_cytokine_bin.csv", row.names=FALSE)
2.5 Tidy Metadata
metadata <-
read.csv("Input Files/metadata.csv") %>%
mutate(bodcond = (ax.girth*100)/st.length,
bc_bin = ifelse(bodcond < quantile(bodcond, probs=0.25, na.rm=TRUE), "Poor",
ifelse(bodcond > quantile(bodcond, probs=0.25, na.rm=TRUE) &
bodcond < quantile(bodcond, probs=0.75, na.rm=TRUE), "Average",
ifelse(bodcond > quantile(bodcond, probs=0.75, na.rm=TRUE), "Robust", NA))),
stage = ifelse(iav=="neg" & iavser=="neg","control",
ifelse(iav=="pos" & iavser=="neg", "acute",
ifelse(iav=="pos" & iavser=="pos", "peak", "late")))) %>%
filter(Sample %in% cyto$Sample)
write.csv(x=metadata, file="Output Files/metadata_cyto.csv", row.names=FALSE)